
Dark
Mythos
SECURITY REVIEW

Date: 1 October 2023

Your smart contracts, our shielding

CONTENTS

1. About Shieldify

2. Disclaimer

3. About Dark Mythos

4. Risk classification

4.1 Impact

4.2 Likelihood

5. Audit Summary

5.1 Protocol Summary

5.2 Scope

6. Findings Summary

7. Findings

3

3

3

3

3

3

4

4

4

5

5

2

1. About Shieldify

We are Shieldify Security – a company on a mission to make web3 protocols more secure, cost-
efficient and user-friendly. Our team boasts extensive experience in the web3 space as both smart
contract auditors and developers that have worked on top 100 blockchain projects with multi-million
dollars in market capitalization.

Book an audit and learn more about us at shieldify.org or @ShieldifySec

2. Disclaimer

This security review does not guarantee bulletproof protection against a hack or exploit. Smart con-
tracts are a novel technological feat with many known and unknown risks. The protocol, which this
report is intended for, indemnifies Shieldify Security against any responsibility for any misbehavior,
bugs, or exploits affecting the audited code during any part of the project’s life cycle. It is also pivotal
to acknowledge that modifications made to the audited code, including fixes for the issues described
in this report, may introduce new problems and necessitate additional auditing.

3. About Dark Mythos

Dark Mythos is a fantasy trading card game that introduces NFT cards with a unique storytelling fea-
ture. NFT holders can unlock exclusive stories crafted by fantasy author Marco Dülk, delving deep
into the lore of Dark Mythos and offering insights into the characters and their worlds. The game
merges the thrill of collecting rare NFT cards with professionally written narratives, creating a per-
sonalized and immersive experience for fans of fantasy literature and trading card games. The stories
are handcrafted by a skilled author to ensure authenticity and high literary quality, making each one
a unique work of art.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1 Impact

• High - results in a significant risk for the protocol’s overall well-being. Affects all or most users
• Medium - results in a non-critical risk for the protocol affects all or only a subset of users, but

is still unacceptable
• Low - losses will be limited but bearable - and covers vectors similar to griefing attacks that

can be easily repaired.

4.2 Likelihood

• High - almost certain to happen and highly lucrative for execution by malicious actors
• Medium - still relatively likely, although only conditionally possible
• Low - requires a unique set of circumstances and poses non-lucrative cost-of-execution to

rewards ratio for the actor

3

https://shieldify.org/
https://twitter.com/ShieldifySec

5. Audit Summary

The audit lasted 3 days and a total of 96 hours were spent by the four auditors:

• @marcobesier
• @ShieldifyMartin
• @ShieldifyAnon
• @ShieldifyGhost

This is the first audit for the protocol’s smart contract component, which represents a single
NFT contract of the ERC-721 standard. Considering the small size codebase, the security review
managed to identify issues, tackling the random number generation process and reentrancy, among
other informational and gas optimization findings.

The NatSpec is comprehensive. The code’s readability could be further improved via the implemen-
tation of the Informational findings (not included in the report), which also outline some foundational
best practices.

We extend our gratitude to the Dark Mythos’s blockchain team for their exemplary responsiveness,
offering comprehensive clarifications and detailed responses to our inquiries.

We would also like to point out that the project’s network of choice - IOTA’s Shimmer, is still a relatively
unexplored territory in terms of performance and network-level bugs and issues that might create
additional attack surfaces.

5.1 Protocol Summary

Project Name Dark Mythos

Repository Dark-mythos

Type of Project ERC-721 collection

Audit Timeline 3 days

Review Commit Hash 45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73

Fixes Review Commit Hash N/A

5.2 Scope

The following smart contracts were in the scope of the audit:

File nSLOC

contracts/DarkMythos.sol 143

Total 143

4

https://twitter.com/marcobesier
https://twitter.com/ShieldifyMartin
https://twitter.com/ShieldifyAnon
https://twitter.com/ShieldifyGhost
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/tree/master
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/tree/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73

6. Findings Summary

The following number of issues have been identified, sorted by their severity:

• Critical and High issues: 0

• Medium issues: 3

• Low issues: 3

ID Title Severity

[M-01] Insecure Generation of Randomness Used for Token Determination Logic Medium

[M-02] Using the transfer Function of address payable is Discouraged Medium

[M-03] Centralization Risk Due to Trusted Owner Medium

[L-01] Missing Reentrancy Protection For DarkMythos._mint() Function Low

[L-02] Missing Zero Value Check for _mintingCost Might Lead to Loss of Funds Low

[L-03] Ownership Role Transfer Function Implement Single-Step Role Transfer Low

7. Findings

[M-01] Insecure Generation of Randomness Used for Token Determina-
tion Logic

Severity

Medium Risk

Description

It generates a uint256 random value that relies on variables like block.timestamp, randomizationNonce
and msg.sender as a source of randomness is a common vulnerability, as the outcome can be

influenced/predicted by miners/validators, but even normal users can easily replicate these three
sources of entropy:

1. block.timestamp can be replicated inside an attacker contract if the attack transaction is in-
cluded in the same block as the PRNG.

2. randomizationNonce can be predicted since the value is deterministically incremented by 1,
and the previous values are publicly accessible (like any state variable of a smart contract on a
public blockchain).

3. msg.sender can be replicated since it’s simply the attacker contract’s address.

Location of Affected Code

File: contracts/DarkMythos.sol#L264-L265

uint256 randomNumber = uint256(keccak256(abi.encodePacked(block.timestamp
, randomizationNonce , msg.sender)));

uint256 randomIndex = randomNumber % tokenIdsToStartMinting.length;

5

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L264-265

Recommendation

Consider using a decentralized oracle for the generation of random numbers, such as Chainlink
VRF. It is important to take into account the requestConfirmations variable that will be used in
the VRFv2Consumer contract when implementing VRF. The purpose of this value is to specify the
minimum number of blocks you wish to wait before receiving randomness from the Chainlink VRF
service.

Team Response

Acknowleged.

[M-02] Using the transfer function of address payable is discouraged

Severity

Medium Risk

Description

The transfer() function only allows the recipient to use 2300 gas. If the recipient uses more than
that, transfers will fail. This could, for example, be the case if vendor is the address of a multisig or
payment splitter that is supposed to execute additional logic after the withdrawal. Furthermore, gas
costs might change in the future, increasing the likelihood of that happening. Also, notice that vendor
is immutable after deployment.

Consider the following scenario:

1. During deployment, Dark Mythos is not aware of this “transfer() issue” and sets vendor to a
contract address (e.g., a payment splitter) that consumes more than 2300 gas.

2. Dark Mythos launches the collection.
3. Users mint the entire collection.
4. Dark Mythos tries to withdraw the revenue from the contract. However, all of their attempts

revert because the recipient consumes more than 2300 gas when receiving the funds.

Notice that Dark Mythos cannot reset vendor to another address (e.g., an externally owned ac-
count) because the contract does not provide such functionality. Therefore, all the revenue that
Dark Mythos earned during the mint of the collection is stuck in the contract forever.

Location of Affected Code

File: contracts/DarkMythos.sol#L230

payable(vendor).transfer(address(this).balance);

Recommendation

While this issue will never occur as long as vendor represents an externally owned account, Dark
Mythos might want to set vendor to a contract address during deployment. Therefore, we recom-
mend using call() instead of transfer() to withdraw the contract’s SMR balance because call()
will forward all available gas instead of only 2300 gas.

- payable(vendor).transfer(address(this).balance);

+ (bool success ,) = msg.sender.call{value: address(this).balance}("");
+ require(success , "Withdrawal failed.")

6

https://docs.chain.link/vrf/v2/introduction
https://docs.chain.link/vrf/v2/introduction
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L230

Team Response

Acknowleged and fixed.

[M-03] Centralization Risk Due to Trusted Owner

Severity

Medium Risk

Description

The contract has an owner with the privileged right to pause and unpause most of the contract’s
functionality and therefore it needs to be trusted. Currently, the contract owner is not prevented
from renouncing the ownership while the contract is paused, which could cause any user assets
stored in the protocol, to be locked indefinitely.

Both Dark Mythos and Shieldify have been clear from the get-go that this functionality was only im-
plemented because EU law (Article 30 of REPORT on the proposal for a regulation) currently requires
that a mechanism exists to terminate the continued execution of transactions. Nonethe-
less, Dark Mythos kindly asked Shieldify to incorporate this (hopefully temporary) issue here in the
report to ensure Dark Mythos’ users enjoy full transparency. Dark Mythos intends to keep this priv-
ileged role only as long as the legal situation is not fully clarified. Furthermore, Dark Mythos has
implemented a dedicated function to revoke their privileged role in the contract as soon as they
are certain that they don’t violate EU law by doing so. Dark Mythos will make an effort to investi-
gate this issue further and stay up to date with the latest legal developments.

Location of Affected Code

File: contracts/DarkMythos.sol#L163

function mint() external payable whenNotPaused {

File: contracts/DarkMythos.sol#L187

function mintBulk(uint256 _bulkAmount) external payable whenNotPaused {

Recommendation

It is recommended that the client carefully manages the private key of the controller account to avoid
any potential hacking risk. Measures that can be taken are to enhance centralized privileges and
roles in the protocol through a decentralized mechanism or module-based accounts with enhanced
security practices. We propose to make the owner of DarkMythos a multi-sig wallet behind a Timelock
contract so that users can monitor what transactions are about to be executed by this account and
take action if necessary.

Team Response

Acknowleged.

7

https://www.europarl.europa.eu/doceo/document/A-9-2023-0031_EN.html
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L163
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L187

[L-01] Missing Reentrancy Protection For DarkMythos._mint() Func-
tion

Severity

Low Risk

Description

A potential threat emerges from the mint() function, as it internally calls safeMint(), which triggers
the onERC721Received callback. This could potentially execute malicious code, allowing an attacker
to claim all tokens. It’s important to be aware that the mintingCost will be paid for each iteration.

Location of Affected Code

File: contracts/DarkMythos.sol#L146-149

for (uint256 i = tokenIdToStartMinting; i < tokenIdToStartMinting +
numberOfTokensPerMint; i++) {

_safeMint(msg.sender , i);
mintedTokenIds[i - tokenIdToStartMinting] = i;

}

Recommendation

To protect against cross-function reentrancy attacks, OpenZeppelin’s nonReentrant modifier that
guards the decorated function with a mutex against reentrancy attacks should be applied. It’s also a
best practice to follow the CEI (Checks-Effects-Interactions) pattern.

File: contracts/DarkMythos.sol#L163

+ import {ReentrancyGuard} from "@openzeppelin/contracts/security/
ReentrancyGuard.sol";

+ contract DarkMythos is ERC721 , ERC721Enumerable , Pausable , Ownable ,
ReentrancyGuard {

.

.

- function mint() external payable whenNotPaused
+ function mint() external payable nonReentrant whenNotPaused {

.

.

- function mintBulk(uint256 _bulkAmount) external payable whenNotPaused {
+ function mintBulk(uint256 _bulkAmount) external payable nonReentrant

whenNotPaused {
}

File: contracts/DarkMythos.sol#L146-149

8

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L146-149
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L163
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L146-149

for (uint256 i = tokenIdToStartMinting; i < tokenIdToStartMinting +
numberOfTokensPerMint; i++) {

- _safeMint(msg.sender , i);
mintedTokenIds[i - tokenIdToStartMinting] = i;

+ _safeMint(msg.sender , i);
}

Team Response

Acknowleged and fixed.

[L-02] Missing Zero Value Check for _mintingCost Might Lead to Loss
of Funds

Severity

Low Risk

Description

The _mintingCost variable in the constructor is missing a zero-value check. This variable serves as
a fundamental parameter in the protocol’s operation, dictating the cost associated with minting to-
kens. If it is set to 0 by mistake, the protocol’s business logic could be severely impacted, as there
will be no minting tax fees.

Location of Affected Code

File: contracts/DarkMythos.sol#L77

constructor(
string memory _name ,
string memory _symbol ,
string memory _baseURI_ ,
uint256 _mintingCost ,
uint256 _numberOfTokensPerMint ,
uint256 _maxBulkBuy ,
uint256 _maxMints ,
uint256 _allowMintingAfter ,
address _vendor

)
ERC721(_name , _symbol)

{

.

.

mintingCost = _mintingCost;
}

9

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L77

Recommendation

To address this vulnerability, consider adding a check so that it is not possible for _mintingCost to
be 0.

constructor(
string memory _name ,
string memory _symbol ,
string memory _baseURI_ ,
uint256 _mintingCost ,
uint256 _numberOfTokensPerMint ,
uint256 _maxBulkBuy ,
uint256 _maxMints ,
uint256 _allowMintingAfter ,
address _vendor

)
ERC721(_name , _symbol)

{
+ require(_mintingCost != 0, "@dev: mintingCost must not equal zero");

.

.

mintingCost = _mintingCost;
}

Team Response

Acknowleged and fixed.

[L-03] Ownership Role Transfer Function Implement Single-Step Role
Transfer

Severity

Low Risk

Description

The current ownership transfer process for all the contracts inheriting from Ownable involves the
current owner calling the transferOwnership() function. If the nominated EOA account is not a valid
account, it is entirely possible that the owner may accidentally transfer ownership to an uncontrolled
account, losing access to all functions with the onlyOwner modifier.

Location of Affected Code

File: contracts/DarkMythos.sol#L24

Recommendation

It is recommended to implement a two-step process where the owner nominates an account and the
nominated account needs to call an acceptOwnership() function for the transfer of the ownership

10

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/45d9a7fbccb7a647f649a3a14f9d3f2bfa1c5f73/contracts/DarkMythos.sol#L24

to fully succeed. This ensures the nominated EOA account is a valid and active account. This can be
easily achieved by using OpenZeppelin’s Ownable2Step contract instead of Ownable.

- import "@openzeppelin/contracts/access/Ownable.sol";
+ import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step

.sol";

- contract DarkMythos is ERC721 , ERC721Enumerable , Pausable , Ownable {
+ contract DarkMythos is ERC721 , ERC721Enumerable , Pausable , Ownable2Step

{

Team Response

Acknowleged and fixed.

11

Thank you!

