
Dark Mythos
Balinor

SECURITY REVIEW

Date: 20 December 2023

Your smart contracts, our shielding

CONTENTS

1. About Shieldify

2. Disclaimer

3. About Dark Mythos

4. Risk classification

4.1 Impact

4.2 Likelihood

5. Security Review Summary

5.1 Protocol Summary

5.2 Scope

6. Findings Summary

7. Findings

3

3

3

3

3

3

4

4

4

4

5

2

1. About Shieldify

We are Shieldify Security – revolutionizing Web3 Security. Elevating standards with top-tier reports,
a unique subscription-based model.

Book a security review and learn more about us at shieldify.org or @ShieldifySec

2. Disclaimer

This security review does not guarantee bulletproof protection against a hack or exploit. Smart con-
tracts are a novel technological feat with many known and unknown risks. The protocol, which this
report is intended for, indemnifies Shieldify Security against any responsibility for any misbehavior,
bugs, or exploits affecting the audited code during any part of the project’s life cycle. It is also pivotal
to acknowledge that modifications made to the audited code, including fixes for the issues described
in this report, may introduce new problems and necessitate additional auditing.

3. About Dark Mythos

Dark Mythos is a fantasy trading card game that introduces NFT cards with a unique storytelling fea-
ture. NFT holders can unlock exclusive stories crafted by fantasy author Marco Dülk, delving deep
into the lore of Dark Mythos and offering insights into the characters and their worlds. The game
merges the thrill of collecting rare NFT cards with professionally written narratives, creating a per-
sonalized and immersive experience for fans of fantasy literature and trading card games. The stories
are handcrafted by a skilled author to ensure authenticity and high literary quality, making each one
a unique work of art.

Balinor is the name of the subsequent collection from the Dark Mythos team. This Smart Contract
is designed for the Dark Mythos collections on the ShimmerEVM Chain, allowing for various minting
mechanisms including purchasable minting, free claiming, and manager minting. It also integrates
royalty management in compliance with the ERC721Royalty standard.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1 Impact

• High - results in a significant risk for the protocol’s overall well-being. Affects all or most users
• Medium - results in a non-critical risk for the protocol affects all or only a subset of users, but

is still unacceptable
• Low - losses will be limited but bearable - and covers vectors similar to griefing attacks that

can be easily repaired

4.2 Likelihood

• High - almost certain to happen and highly lucrative for execution by malicious actors

3

https://shieldify.org/
https://twitter.com/ShieldifySec

• Medium - still relatively likely, although only conditionally possible
• Low - requires a unique set of circumstances and poses non-lucrative cost-of-execution to

rewards ratio for the actor

5. Security Review Summary

The security review lasted four days and a total of 96 hours were spent on it by the core Shieldify
team. This is the second audit for the protocol’s subsequent NFT collection, which represents a sin-
gle NFT contract of the ERC-721 standard. We would like to emphasize that this codebase is an im-
proved version of the first one, as most of the security considerations from the first audit have been
implemented by the developers. Considering the codebase’s small size, the security review managed
to identify issues, primarily around missing or improper input validation checks. The NatSpec is com-
prehensive.

We extend our gratitude to the Dark Mythos’s team for their fast responsiveness, offering compre-
hensive clarifications and detailed fedback for our inquiries.

We would also like to point out that the project’s network of choice - IOTA’s Shimmer, is still a relatively
unexplored territory in terms of performance and network-level bugs and issues that might create
additional attack surfaces.

5.1 Protocol Summary

Project Name Dark Mythos

Repository Dark-Mythos

Type of Project ERC-721

Audit Timeline 4 days

Review Commit Hash cb3abbc72a189d1dd6d81444ee8dd54326cff0fa

Fixes Review Commit Hash 6218b31025026202196bf0d3a6dcac598a1f6446

5.2 Scope

The following smart contracts were in the scope of the security review:

contracts/DarkMythosBalinor.sol 199

Total 199

6. Findings Summary

The following number of issues have been identified, sorted by their severity:

• Critical and High issues: 0
• Medium issues: 2
• Low issues: 2

4

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/tree/cb3abbc72a189d1dd6d81444ee8dd54326cff0fa/Balinor
https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/tree/6218b31025026202196bf0d3a6dcac598a1f6446/Balinor

ID Title Severity

[M-01] Insufficient Input Data Validation Medium

[M-02] Centralization Risks Medium

[L-01] Gas-Griefing Possibility In withdraw() Method Low

[L-02] The mint() Method does Not Follow the Checks-Effects-Interactions
Pattern

Low

7. Findings

[M-01] Insufficient Input Data Validation

Severity

Medium Risk

Description

The following state variables are not validated in any regard or missing additional validation:
royaltyFraction, maxClaimableSupply, maxManagerMintableSupply and vendor in the constructor
at initializing phase.

This can lead to the disfunction of the DarkMythosBalinor.sol due to the fact that all of these vari-
ables are immutable so they can not be changed after deployment time.

Example scenarios are:

1. The royaltyFraction parameter is represented as 10 000 (100%). The check asserts that the
variable should be less than 10 000 (100%) which could potentially allow the deployer to set the
royalty fee to 100% for secondary sales, which could impact the economics of the protocol and
disincentive the community to trade the tokens. This on the other hand could lead to decreased
trading volume and reduced longevity of the project.

2. If the deployer accidentally sets _maxManagerMintableSupply or _maxClaimableSupply to zero,
updateWhitelistClaimAllocations() and mint() function will revert. Note: For mint() func-
tion, it will revert when isManagerMint or isClaimMint parameter is true.

3. The constructor checks if _royaltyReceiver and _vendor addresses are not address(0).
However, there is a missing check if these addresses are identical. After discussion with the
Dark Mythos team, it was deduced that if the _royaltyReceiver and _vendor addresses are
the same, this could lead to unwanted issues in the business logic and incorrect privileges for
these actors.

Location of Affected Code

File: contracts/DarkMythosBalinor.sol#L93-L130

5

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/cb3abbc72a189d1dd6d81444ee8dd54326cff0fa/Balinor/contracts/DarkMythosBalinor.sol#L93-L130

constructor(
string memory _name ,
string memory _symbol ,
string memory _baseURI_ ,
uint256 _mintingCost ,
uint256 _maxManagerMintableSupply ,
uint256 _maxClaimableSupply ,
uint256 _maxPurchasableSupply ,
uint256 _maxMintsPerPurchaseTx ,
uint256 _allowPurchaseAfter ,
address _vendor ,
address _royaltyReceiver ,
uint96 _royaltyFraction

) payable ERC721(_name , _symbol) Ownable(msg.sender) {
.
.
require(_royaltyFraction <= 10000, "Royalty fraction must be <= 10000")

;
.
.
require(_vendor != address(0), "Vendor must not be the zero address");
require(_royaltyReceiver != address(0), "Royalty receiver must not be

the zero address");
.
.

}

Recommendation

1. We propose that the max allowed amount for _royaltyFraction should be something not
higher than 20% (2000) to prevent such a case. This could be implemented with a small change
in the check in the constructor:

+ uint256 private constant _MAX_ROYALTY_FRACTION_FEE = 2000; // 20%;

+ require(_royaltyFraction <= 2000, "Royalty fraction must be <= 20%");

2. It is recommended to add a check for maxManagerMintableSupply != 0 and maxClaimableSupply
!= 0 in the constructor.

3. It is recommended to add a check for _royaltyReceiver != _vendor in the constructor and
setRoyaltyReceiver() functions.

Team Response

Acknowledged and fixed.

[M-02] Centralization Risks

Severity

Medium Risk

6

Description

In the current implementation setup, the owner is meant to be a single Externally Owned Account
(EOA) which could potentially introduce security risks regarding single points of failure or misman-
agement.

One possible attack scenario is if the owner is compromised a DoS attack on the protocol can be
executed based on pausing functionality.

Additionally the following functions: updateWhitelistClaimAllocations(), provideSupply(),
setRoyaltyReceiver(), addManagerContract(), removeManagerContract() are dependant solely
on the owner and a single mistake can lead to serious impact.

Location of Affected Code

File: contracts/DarkMythosBalinor.sol

function updateWhitelistClaimAllocations(address[] calldata users ,
uint256[] calldata amounts) external onlyOwner {

function provideSupply(uint256 amount) external onlyOwner {
function setRoyaltyReceiver(address _royaltyReceiver) external payable

onlyOwner {
function addManagerContract(address _manager) external payable onlyOwner

{
function removeManagerContract(address _manager) external payable

onlyOwner {
function pause() external payable onlyOwner {
function unpause() external payable onlyOwner {

Recommendation

It’s crucial for the long-term success and trustworthiness of the project to address these concerns
thoroughly. One possible solution is using a multi-sig or governance as the protocol owner. Addition-
ally consider using a Timelock smart contract so that users know in advance the applied changes.

Team Response

Acknowledged.

[L-01] Gas-Griefing Possibility In withdraw() Method

Severity

Low Risk

Description

In the current implementation of the call in withdraw() function the data parameter is omitted, but
the returned data from the receiver will be copied to memory by the contract at compile time any-
way.

A malicious actor can execute a gas-griefing attack, but there is no economic incentive for the at-
tacker since the money transfer to his address will fail.

7

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/cb3abbc72a189d1dd6d81444ee8dd54326cff0fa/Balinor/contracts/DarkMythosBalinor.sol

However, we recommended preventing such a possibility since the vendor address might be a multi-
signature wallet or relayer might be used, where internal sub-calls are executed. If the gas is insuffi-
cient the funds might become forever stuck in the contract because the vendor address cannot be
changed.

Location of Affected Code

File: contracts/DarkMythosBalinor.sol#L241

function withdraw() external {
require(msg.sender == vendor , "Caller must be vendor");
uint256 amount = address(this).balance;

emit Withdraw(amount);

(bool success ,) = msg.sender.call{ value: amount }("");
require(success , "Withdrawal failed");

}

Recommendation

Consider using a low-level assembly call since it does not automatically copy return data to mem-
ory.

function withdraw() external {
require(msg.sender == vendor , "Caller must be vendor");
uint256 amount = address(this).balance;
emit Withdraw(amount);

- (bool success ,) = msg.sender.call{ value: amount }("");

+ bool success;
+ assembly {
+ success := call(gas(), msg.sender , amount , 0, 0, 0, 0)
+ }

require(success , "Withdrawal failed");
}

Team Response

Acknowledged and fixed.

[L-02] The mint() Method does Not Follow the Checks-Effects-Interactions
Pattern

Severity

Low Risk

8

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/cb3abbc72a189d1dd6d81444ee8dd54326cff0fa/Balinor/contracts/DarkMythosBalinor.sol#L241

Description

The mint() function in DarkMythosBalinor.sol contract does not follow the Checks-Effects
-Interactions (CEI) pattern. It is recommended to always first change the state before doing
external calls.

There is no potential financial loss in the mint() function in DarkMythosBalinor.sol contract since
there is a nonReentrant modifier.

Location of Affected Code

File: contracts/DarkMythosBalinor.sol#L165-L166

} else if (isClaimMint) {
require(amount <= whitelistClaimAllocations[msg.sender], "Not enough

allocation to claim");
require(maxClaimableSupply != 0, "Claiming not enabled");
_mint(claimableTokenIds , msg.sender , amount);

whitelistClaimAllocations[msg.sender] -= amount;
totalAllocatedTokens -= amount;

}

Recommendation

Consider sticking to the CEI(Checks-Effects-Interactions) pattern in mint() function in the fol-
lowing way:

else if (isClaimMint) {
require(amount <= whitelistClaimAllocations[msg.sender], "Not enough

allocation to claim");
require(maxClaimableSupply != 0, "Claiming not enabled");

+ whitelistClaimAllocations[msg.sender] -= amount;
+ totalAllocatedTokens -= amount;

_mint(claimableTokenIds , msg.sender , amount);

- whitelistClaimAllocations[msg.sender] -= amount;
- totalAllocatedTokens -= amount;
}

Team Response

Acknowledged and fixed.

9

https://gitlab.vettersolutions.de/dark-mythos/web3-academy-smart-contract/-/blob/cb3abbc72a189d1dd6d81444ee8dd54326cff0fa/Balinor/contracts/DarkMythosBalinor.sol#L165-L166

Thank you!

